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Theory of Computation

Preliminaries

� 0 ∈ N

� Alphabet (Σ): finite (non-empty) set of symbols

� String: finite sequence of symbols from a given alphabet
- empty string: ε or Λ

� Language (L): a set of strings (over an alphabet)
- L1 · L2 = L1L2 := {xy | x ∈ L1, y ∈ L2}
- L∗ := {x1 . . . xn | x1, . . . , xn ∈ L, n ∈ N}
- L+ := {x1 . . . xn | x1, . . . , xn ∈ L, n ≥ 1}
- Num of strings over any fixed finite alphabet is countable
- Num of lang. over any non-empty alphabet is uncountable

Regular Languages

� DFA, NFA, ε-NFA, Regex are all equivalent (in terms of the
set of expressible languages)

Deterministic Finite Automata (DFA)

� A := (Q,Σ, δ, q0, F ), where:
- Q is a finite set of states
- Σ is a (finite) alphabet
- δ : Q× Σ→ Q is a function
- q0 ∈ Q is the starting state
- F ⊆ Q is the set of final states

� Transition table (example):
0 1

q0 q1 q0

q1 q2 q0

q2 q2 q2

� Transition function for strings:
- δ̂(q, ε) := q

- δ̂(q, xa) := δ(δ̂(q, x), a)

� Language accepted:

L(A) = Lang(A) :=
{
w | δ̂(q0, w) ∈ F

}
(i.e. whether applying each char terminates in F )

� Dead state q: ∀w ∈ Σ∗, δ̂(q, w) 6∈ F
(i.e. cannot reach any final state from q)

� Unreachable state q: ∀w ∈ Σ∗, δ̂(q0, w) 6= q
(i.e. cannot reach q from q0)

Nondeterministic Finite Automata (NFA)

� A := (Q,Σ, δ, q0, F ), where:
- Q is a finite set of states
- Σ is a (finite) alphabet
- δ : Q× Σ→ 2Q is a function
- q0 ∈ Q is the starting state
- F ⊆ Q is the set of final states

� Transition table (example):
ε 0 1

q0 {q1, q2} {q0} . . .
q1 . . . . . . . . .
q2 . . . . . . . . .

� Transition function for strings:
- δ̂(q, ε) := {q}
- δ̂(q, xa) :=

⋃
p∈δ̂(q,x) δ(p, a)

� Language accepted:

L(A) = Lang(A) :=
{
w | δ̂(q0, w) ∩ F 6= ∅

}
(i.e. whether there is a path of chars that terminates in F )

� To show that every language acceptable by NFA is also
acceptable by some DFA:
Given NFA A := (Q,Σ, δ, q0, F ),
define DFA AD := (QD,Σ, δD, {q0}, FD), where
- QD := 2Q

- FD := {S | S ⊆ Q and S ∩ F 6= ∅} ⊆ QD
- δD(S, a) =

⋃
q∈S δ(q, a)

and then prove that for any string w, δ̂D({q0}, w) = δ̂(q0, w)
by induction on length of w

� When simulating the NFA to DFA algorithm, omit
unreachable states and follow it like a flood-fill:

0 1
{q0} {q0, q1} . . .
{q0, q1} . . . . . .

. . . . . . . . .

NFA with ε transitions (ε-NFA)

� A := (Q,Σ, δ, q0, F ), like NFA, but δ : Q× (Σ ∪ {ε})→ 2Q

� ε closure: Eclose : Q→ 2Q is defined recursively:
- q ∈ Eclose(q)
- p ∈ Eclose(q) =⇒ ∀p′ ∈ δ(p, ε), p′ ∈ Eclose(q)
(note: we define Eclose(<set>) to return a set union)

� Transition function for strings:
- δ̂(q, ε) := Eclose(q)

- δ̂(q, wa) :=
⋃
p∈REclose(p) where R =

⋃
p∈δ̂(q,w) δ(p, a)

� To show that every language acceptable by ε-NFA is also
acceptable by some DFA:
Given ε-NFA A := (Q,Σ, δ, q0, F ),
define DFA AD := (QD,Σ, δD, Eclose(q0), FD), where
- QD := 2Q

- FD := {S | S ⊆ Q and S ∩ F 6= ∅} ⊆ QD
- δD(S, a) :=

⋃
p∈REclose(p) where R =

⋃
p∈S δ(p, a)

Regular Expressions

� Defined recursively:
- L(ε) := {ε}
- L(∅) := ∅
- a ∈ Σ =⇒ L(a) := {a}
- L(r1 + r2) := L(r1) ∪ L(r2)
- L(r1 · r2) := {xy | x ∈ L(r1) and y ∈ L(r2)}
- L(r∗1) := {x1 · · ·xk | k ∈ N and xi ∈ L(r1) ∀1 ≤ i ≤ k}
- L((r1)) := L(r1)

� To show that every language acceptable by DFA is also
accepted by some regular expression:
- Given DFA A := (Q,Σ, δ, qstart, F ) where Q = {1, . . . , n}
for some n ∈ N and qstart = 1,
let Rki,j be the regular expression for the set of strings
formable by going from state i to state j using intermediate
states numbered ≤ k (note: i and j may be more than k),
and prove by induction on k

- R0
i,j =

{∑
r ar if i 6= j

ε+
∑
r ar if i = j

where δ(i, ar) = j

- Rk+1
i,j = Rki,j +Rki,k+1

(
Rkk+1,k+1

)∗
Rkk+1,j

- Then a regular expression for L(A) is
∑
j∈F R

n
1,j

� To show that every language acceptable by regular
expression is also accepted by some ε-NFA:
- (the ε-NFA built additionally satisfies: only one final
state, no transition into starting state, no transition out of
final state, the starting and final states are different)
- base cases: ∅, ε, and a regular expressions: two states; set
edge as appropriate
- induction case: consider how to combine the ε-NFA for
r1 + r2, r1 · r2, r∗1 (remember to add εs)

� Identities and extensions (the languages accepted are
equivalent):
- M +N = N +M
- L(M +N) = LM + LN
- L+ L = L
- (L∗)∗ = L∗

- ∅∗ = ε
- ε∗ = ε
- L+ = LL∗ = L∗L
- L∗ = ε+ L+

- (L+M)∗ = (L∗M∗)∗

DFA Minimisation

� Equivalence classes of strings in a language:
u ≡L v := ∀x, ux ∈ L ⇐⇒ wx ∈ L

� Given a regular language L over Σ, the equivalence classes
(if finite) form a unique minimal DFA (Q,Σ, δ, q0, F ),
where:
- Q := {equiv(w) | w ∈ Σ∗}
- δ(equiv(w), a) := equiv(wa) (this is well-defined)
- q0 := equiv(ε)
- F := {equiv(w) | w ∈ L}

� States (p, q) (unordered pair) are distinguishable: ∃ string

w such that exactly one of δ̂(p, w) and δ̂(q, w) is in F
(can be shown that a distinguishable pair must be
distinguishable by a suffix no longer than n2 length)

� Table building algorithm to determine all
distinguishable pairs:
- Base case: each pair (p, q) such that p ∈ F and q 6∈ F (or
vice versa) is distinguishable
- Inductive step: for any a ∈ Σ, if (δ(p, a), δ(q, a)) is
distinguishable, then (p, q) is distinguishable
Example (“X1”: final vs non-final; “X2”: distinguishable by
X1, . . . ):
q1

q2 X3 X3
q3 X3 X3
q4 X1 X1 X1 X1
q5 X2 X2 X2 X2 X1

q0 q1 q2 q3 q4

� DFA minimisation algorithm:
0. Delete all non-reachable states
1. Find all nondistinguishable pairs of states (they give an
equivalence relation)
2. Build the new automata (Q,Σ, δ, q0, F ), where:
- Q is the set of equivalence classes
- δ(equiv(p), a) := δ(equiv(q)) where δorig(p, a) = q
- q0 is the equivalence class of the original starting state
- F is the set of equivalence classes containing a final state
(all such equivalence classes will only contain final states)

Regular Languages

� Pumping lemma: If L is a regular language, then there
exists some n > 0 such that ∀w ∈ L where |w| ≥ n, we can
break w into three strings w = xyz such that:
- y 6= ε
- |xy| ≤ n
- ∀k ≥ 0, xykz ∈ L
Proof: Let n be the number of states in a DFA that accepts
L, and consider the (n+ 1) prefixes of w of lengths 0, . . . , n,
and apply Pigeonhole principle on the states reached by
those (n+ 1) prefixes
Corollary: All finite languages (languages containing a
finite number of strings) are regular

� Closure properties: If L1 and L2 are regular languages,
then the following are regular:
- L1 ∪ L2

- L1 · L2

- L1 ∩ L2

- L1 − L2

If L is a regular language, then the following are regular:
- L := Σ∗ − L
- LR (the set formed by reversing every string in L)

� Homomorphism: h : Σ→ B∗, where Σ, B are alphabets
- For string, define h : Σ∗ → B∗ : a1 · · · an 7→ h(a1) · · ·h(an)
- If L is regular, then h(L) is also regular

� Parallel simulation: Taking the product of both sets of
states; choice of δ and F depends on the problem; can
easily model union and intersection of regular languages

Context-Free Languages

Context-Free Grammars

� G := (V, T, P, S), where:
- V is a finite set of variables (aka. non-terminals)
- T is a finite set of terminals
- P is a finite set of productions of the form A→ γ, where
A ∈ V and γ ∈ (V ∪ T )∗

- S ∈ V is the start symbol (note: S can be implicitly start)

� Derivations: αAβ ⇒G αγβ : there is a production A→ γ
α⇒∗G β is defined inductively:
- α⇒∗G α for all α ∈ (V ∪ T )∗

- If α⇒∗G β and β ⇒G γ, then α⇒∗G γ

� Language accepted: L(G) := {w ∈ T ∗ | S ⇒∗G w}

� Sentential form: Any α such that S ⇒∗G α

� Left-most derivation: replace left-most non-terminal
Right-most derivation: replace right-most non-terminal
- There is exactly one left-most (resp. right-most)
derivation for each valid parse tree

� Right-linear grammar: G is right-linear if all
productions are in one of these forms:
- A→ wB, where w ∈ T ∗ and B ∈ V
- A→ w, where w ∈ T ∗
Thm: Right-linear grammar is equiv. to regular language



� To show that every language acceptable by DFA is also
generated by some right-linear grammar:
- Given DFA A := (Q,Σ, δ, q0, F ) (WLOG assume
Q ∩ Σ = ∅), define G := (Q,Σ, P, q0), where:
- ∀q, p ∈ Q, ∀a ∈ Σ, if δ(q, a) = p then add rule q → ap to P
- ∀q ∈ F , add rule q → ε to P
and then prove that for any string w,
δ̂(q0, w) = p ⇐⇒ q0 ⇒∗G wp

(and hence δ̂(q0, w) ∈ F ⇐⇒ q0 ⇒∗G w)

� To show that every language generated by some right-linear
grammar is also acceptable by some ε-NFA:
- Given G := (V,Σ, P, S) (WLOG assume V ∩ Σ = ∅, and
each production is in the form A→ bC or A→ ε where
b ∈ Σ ∪ {ε} and A,C ∈ V (we can split up production rules
if this is not already the case)), define ε-NFA
A := (V,Σ, δ, S, F ), where
- F := {A | A→ ε is a production in P}
- if A→ aB is a production in P , then B ∈ δ(A, a)

and then prove that A⇒∗G wB ⇐⇒ B ∈ δ̂(A,w)

(and hence A⇒∗G w ⇐⇒ δ̂(A,w) ∩ F 6= ∅)

(and hence S ⇒∗G w ⇐⇒ δ̂(S,w) ∩ F 6= ∅)

� Inherently ambiguous language: Any CFG for it will
have ambiguous parse trees

Pushdown Automata (PDA)

� P := (Q,Σ,Γ, δ, q0, Z0, F ), where:
- Q is a finite set of states
- q0 ∈ Q is the start state
- F ⊆ Q is the set of final states
- Σ is the input alphabet
- Γ is the stack alphabet
- Z0 ∈ Γ is the initial stack symbol
- δ : Q× (Σ ∪ ε)× Γ→ 2Q×Γ∗ is a function
(where (p, γ) ∈ δ(q, a,X) means that when in state q,
reading symbol a, top of stack being X, then the machine’s
new state is p, the X at top of stack is popped, and γ is
pushed to the stack (right side goes into stack first))

� Instantaneous descriptions:
(q, w, α) means the current state is q, the input left is w,
and α is the current stack state
- (q, aw,Xα) ` (p, w, βα) := (p, β) ∈ δ(q, a,X) (a can be ε)
- I `∗ J := I = J or (I `∗ K and K ` J)

� Possible acceptance conditions: (they are equivalent)
By final state: {w | ∃qf ∈ F such that (q0, w, Z0) `∗P (qf , ε, α)}
By empty stack: {w | ∃q ∈ Q such that (q0, w, Z0) `∗P (q, ε, ε)}

� Acc. by empty stack =⇒ Acc. by final state:
(intuitively: initially add a special stack symbol, and if that
special symbol is encountered then go to the final state)
Given P := (Q,Σ,Γ, δ, q0, Z0, F ), then
let PF := (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δF , p0, X0, {pf}), where
- δF (p0, ε,X0) = {(q0, Z0X0)}
- ∀p ∈ Q,∀a ∈ Σ ∪ {ε},∀Z ∈ Γ,

δF (p, a, Z) contains all (q, γ) ∈ δ(p, a, Z)
- ∀p ∈ Q, δF (p, ε,X0) contains (pf , ε)

� Acc. by final state =⇒ Acc. by empty stack:
(intuitively: from every final state, add a transition to a
special state pf that empties the stack (note: still need
special stack symbol because the existing PDA might
empty the stack in a non-final state))
Given P := (Q,Σ,Γ, δ, q0, Z0, F ), then

let PE := (Q ∪ {p0, pf},Σ,Γ ∪ {X0}, δE , p0, X0, {pf}), where
- δE(p0, ε,X0) = {(q0, Z0X0)}
- ∀p ∈ Q,∀a ∈ Σ ∪ {ε},∀Z ∈ Γ,

δE(p, a, Z) contains all (q, γ) ∈ δ(p, a, Z)
- ∀p ∈ F,∀Z ∈ Γ ∪ {X0}, δE(p, ε, Z) contains (pf , ε)
- ∀Z ∈ Γ ∪ {X0}, δE(pf , ε, Z) contains (pf , ε)

� Note: in above two constructions, the constructed PDA
works both for final state and empty stack models

Equivalence of CFGs and PDAs

� To show that every CFG is accepted by a PDA (empty
stack model):
(intuitively, use left-most derivation and use stack to keep
track of “what is left to derive”)
Given G := (V, T, P, S), then
let PDA := ({q0}, T, V ∪ T, δ, q0, S, F ), where
- ∀a ∈ T, δ(q0, a, a) = {(q0, ε)}
- ∀A ∈ V, δ(q0, ε, A) = {(q0, γ) | (A→ γ) ∈ P}

� To show that every PDA (empty stack model) is accepted
by a CFG:
(intuitively, each production rule fully removes one item
(and all the children that spawn) from the stack)
Given PDA := (Q,Σ,Γ, δ, q0, Z0, F ), then
let G := (V,Σ, R, S), where
- V := {S} ∪ {[qZp] | q, p ∈ Q,Z ∈ Γ}
- ∀p ∈ Q, we have production S → [q0Z0p]
- If (r, Y1 · · ·Yk) ∈ δ(q, a,X), then ∀r1, . . . , rk ∈ Q, we have
production [qXrk]→ a[rY1r1][r1Y2r2] · · · [rk−1Ykrk]

Deterministic PDA

� PDA where both conditions are satisfied:
- ∀a ∈ Σ∪ {ε},∀Z ∈ Γ,∀q ∈ Q, there is at most one element
on δ(q, a, Z)
- if δ(q, ε,X) is non-empty, then δ(q, a,X) is empty for all
a ∈ Σ

� Thm: There exists a language which is accepted by PDA
but not by any DPDA

� Every regular language can be accepted by DPDA with
final state
- just don’t use the stack

� DPDA with empty stack cannot accept some regular
langauges
- if w ∈ L then we can’t accept any w′ that contains w as a
prefix

Chomsky Normal Form

� All productions are in these forms:
- A→ BC (where A,B,C ∈ V )
- A→ a (where a ∈ T and A ∈ V )
(note: no ε on purpose)

� A is useful: ∃α, β ∈ (V ∪ T )∗, ∃w ∈ T ∗ s.t. S ⇒∗ αAβ ⇒∗ w
A is useless: A is not useful

� A is generating: ∃w ∈ T ∗ such that A⇒∗ w
To determine generating symbols:
- Base case: all symbols in T are generating
- Inductive step: if there is a production A→ α and α
consists only of generating symbols, then A is generating

� A is reachable: ∃α, β ∈ (V ∪ T )∗ such that S ⇒∗ αAβ
To determine reachable symbols:
- Base case: S is reachable
- Inductive step: if A is reachable and A→ α is a
production, then all symbols in α are reachable

� A is useful =⇒ A is generating and reachable
(note: converse is not necessarily true)

� Eliminating useless symbols:
1. Eliminate all non-generating symbols
2. Eliminate all non-reachable symbols
The resulting CFG does not contain any useless symbols

� A is nullable: A⇒∗ ε
To determine nullable symbols:
- Base case: if A→ ε then A is nullable
- Inductive step: if A→ α and every symbol in α is
nullable, then A is nullable

� Eliminating εεε productions: Determine all nullable
non-terminals and replace each production of that
nonterminal A→ α with A→ α′ where α′ can be formed
from α by possibly deleting some of the non-terminals
which are nullable (but omit the production when α = ε)
- e.g. If A and C are nullable then convert A→ ABaCd to
A→ ABaCd|BaCd|ABad|Bad - this method produces the
language L(G′) = L(G)− {ε}
- proof by induction that ∀A ∈ V,∀w ∈ T ∗ − {ε},
A⇒∗G w ⇐⇒ A⇒∗G′ w
(note: if we really want nullable S, then we can wrap the
nonnullable grammar with a new symbol to ε)

� Eliminating unit productions (i.e. determining A⇒∗ B
for any non-terminals A and B):
- Base case: (A,A) is a unit pair
- Inductive step: if (A,B) is a unit pair and B → C is a
production, then (A,C) is a unit pair
Then for any unit pair (A,B), remove the unit productions
of A, and for every production B → γ add production
A→ γ

� Eliminating overlong productions:
All productions of length at least 2 can be converted to
acceptable form:
Given production A→ X1 · · ·Xk, replace with:
- A→ Z1B2

- B2 → Z2B3
...

- Bk−1 → Zk−1Zk
- Zi → Xi if Xi is a terminal
- Zi = Xi (i.e. replace Zi with Xi in above rules) if Xi is a
nonterminal

� Thm on size of parse tree: Suppose we have a parse tree
using a Chomsky Normal Form Grammar. If the length of
the longest path from root to a node is s, then the size of
the string generated is at most 2s−1

� Pumping lemma: If L is a context-free language, then
there exists some n > 0 such that ∀z ∈ L where |z| ≥ n, we
can break z into five strings z = uvwxy such that:
- vx 6= ε
- |vwx| ≤ n
- ∀i ≥ 0, uviwxiy ∈ L
Proof: In the CNF parse tree of any string of length at least
n = 2m, there is a path of length at least m+ 1, so there
must be two non-terminals which are same

� Ogden’s lemma: If L is a context-free language, the there
exists some n > 0 such that ∀z ∈ L with a least n
distinguished positions, we can break z into five strings
z = uvwxy such that:
- vx has at least one distinguished position
- vwx has at most n distinguished positions
- ∀i ≥ 0, uviwxiy ∈ L

� Closure properties:
- Union: If L1 and L2 are context-free, then L1 ∪ L2 is
context-free too
- Substitution: If L is context-free, and given any mapping
s from each terminal a to a context-free language La, we
define s on strings as such:
s(ε) := {ε}
s(wa) = s(w) · s(a), ∀a ∈ Σ,∀w ∈ Σ∗

Then
⋃
w∈L s(w) is context-free

- Reversal: If L is context-free, then LR :=
{
wR | w ∈ L

}
is

context-free
- Context-free ∩ regular: If L is context-free and R is
regular, then L ∩R is context-free
- Note: Intersection might not be context-free

� Testing whether CFL is ∅∅∅: Check whether S is a useless
symbol

� Testing membership in a CFL: Convert to CNF, and
use a dynamic programming algorithm; for w = a1 · · · an,
we determine the set Xi,j of non-terminals which generate
the string aiai+1 · · · aj
- Base case: Xi,i is the set of non-terminals that generate ai
- Inductive step: Xi,j is the set of all A such that A→ BC
and B ∈ Xi,k, C ∈ Xk+1,j ,∀i ≤ k < j
Then w is in the language iff S ∈ X1,n

Example:

i
j 1 2 3 4 5 6 7 8

1 CD A CSB A CSB A CSB A
2 CD A CB A CSB A CSB
3 BCD A CB A CSB A
4 CD A CSB A CSB
5 CD A CSB A
6 BCD A CB
7 BCD A
8 CD

� Greibach Normal Form: All productions are of the form
A→ aα where a is a terminal and α is a string of zero or
more terminals or non-terminals
- all context-free languages not containing ε have a
Greibach Normal Form grammar

Turing Machines

� M := (Q,Σ,Γ, δ, q0, B, F ), where:
- Q is a finite set of states
- q0 ∈ Q is the start state
- Γ is the tape alphabet
- Σ ⊆ Γ is the input alphabet
- B ∈ Γ− Σ is the blank symbol
- F ⊆ Q is the set of final states
- δ : Q× Γ→ Q× Γ× {L,R} is a function

� Instantaneous description: x0x1 · · ·xn−1qxnxn+1 · · ·xm
means that the tape state is x0 · · ·xm (all other symbols are
blanks) and the head is at position n (seems like there is no



memory of the “initial cell”, so we can’t calculate references
from it)
- ‘`’: one-step state transition
- I `∗ J := I = J or (I `∗ K and K ` J)

� Language accepted:
L(M) = {x | q0x `∗ αqfβ for some qf ∈ F}
(by convention, once we enter an accepting state, we stop
and accept the input)

� Function computed: the content of the tape after it halts
is the output of f (if it does not halt, then f is not defined
for the given input)

� L is recursively enumerable: Some Turing machine
accepts L

� L is recursive (decidable): Some Turing machine accepts
L, and halts on all inputs

� f is partial recursive (partially computable): Some
Turing machine computes f (it halts and output f(x) for
all x on which f is defined, and it does not halt on all other
inputs)

� f is recursive (computable): Some Turing machine
computes f and f is defined an all elements of Σ∗

� Halting problem: It is not possible to determine if a
Turing machine will halt on a particular input

� Equivalent extensions:
- stay where you are (‘S’ move)
- storage in finite control (extra memory to store finite
values, equivalent to growing the state)
- multiple tracks on a single tape
- subroutines
- semi-infinite tapes (i.e. tapes that are only infinite on one
end)
- multiple tapes (combine them into multiple tracks on a
single tape, and add one more track per original tape to
store a marker at the head position; then for one step of the
original machine, we look at all the current values (stored in
a finite store); time complexity is O(t2), where the original
machine took t time)
- non-deterministic Turing machines (δ(q, a) is instead a
(finite) set of possibilities; equivalent because we can do
BFS or IDDFS (by storing queued states separated by ‘#’))

� Church-Turing thesis: Whatever can be computed by an
algorithmic devise (either function computation or language
acceptance) can be done by a Turing machine

� Countability of strings: for each string x over {0, 1}∗, let
1x(in binary)− 1 be its code; let wi be the ith string

� Countability of Turing machines: (proof omitted); let
Mi be the ith machine

� Non-RE language by diagonalisation:
Ld := {wi | wi 6∈ L(Mi)} is not RE
(proof: show that ∀j ∈ N, L(Mk) 6= Ld)

� Thm: L is recursive =⇒ L is recursive

� Thm: L is recursive ⇐⇒ L is RE and L is RE

� Universal turing machine:
Lu := {(M,w) |M accepts w} is RE

� Thm: Lu is not RE

� Cor: Lu is not recursive

� Reduction: P1 reduces to P2 (P1 ≤m P2):
∃ recursive f such that x ∈ P1 ⇐⇒ f(x) ∈ P2

(note: we can’t manipulate the answer from the oracle)
- If P1 is not recursive then P2 is not recursive
- If P1 is not RE then P2 is not RE
- If P2 is recursive then P1 is recursive
- If P2 is RE then P1 is RE

� Machines accepting the empty language:
Le := {M | L(M) = 0}
Lne := {M | L(M) 6= 0}
Thm: Lne is RE
Thm: Le is not recursive
Cor: Le is not RE

� Non-trivial property about RE languages: there exists at
least one RE language which satisfies the property and at
least one RE language which does not satisfy the property

� Rice’s thm: If P is a non-trivial property about RE
languages, then LP := {M | L(M) satisfies property P} is
undecidable

� Post’s correspondence problem (PCP): Given two lists
of strings A = w1, . . . , wk and B = x1, . . . , xk, do there exist
i1, . . . , im (where m > 0) such that wi1 · · ·wim = xi1 · · ·xim?

� Modified Post’s correspondence problem (MPCP):
Given two lists of strings A = w1, . . . , wk and
B = x1, . . . , xk, do there exist i1, . . . , im (where m ≥ 0)
such that w1wi1 · · ·wim = x1xi1 · · ·xim?

� Thm: Lu ≤m MPCP ≤m PCP

� Thm: PCP ≤m (Is grammar ambiguous?)

� Further undecidable problems:
- Given CFGs G1 and G2, whether L(G1) ∩ L(G2) = ∅?
- Given CFGs G1 and G2, whether L(G1) = L(G2)?
- Given CFG G and regular expression R, whether
L(G) = L(R)?

Unrestricted Grammars

� G := (N,Σ, S, P ), where:
- N is a finite set of variables (aka. non-terminals)
- Σ is a finite set of terminals (where N ∩ Σ = ∅)
- P is a finite set of productions of the form α→ β, where
α ∈ (N ∪ Σ)∗N(N ∪ Σ)∗ (i.e. α has at least one
non-terminal) and β ∈ (N ∪ Σ)∗

- S ∈ V is the start symbol (note: S can be implicitly start)

� Context-sensitive grammar: If we additionally have
|α| ≤ |β| for all productions α→ β in P , then G is
context-sensitive

� Thms:
- If G is an unrestricted grammar, then L(G) is RE
- If L is RE, then there exists an unrestricted grammar such
that L = L(G)

Complexity

� Time complexity:
- TimeM (x): number of steps used by a machine M on
input x before halting (if it does not halt, then
TimeM (x) =∞)

- for non-deterministic machines, we use the maximum time
on any path, including non-accepting ones
- M is T (n) time bounded, if for any input x of length n,
TimeM (x) ≤ T (n)

� Space complexity:
- SpaceM (x): maximum number of cells touched by M on
input x (excluding read-only input tape and one-way
write-only output tape) (if it does not halt, then
SpaceM (x) =∞)
- M is S(n) time bounded, if for any input x of length n,
SpaceM (x) ≤ S(n)

� Language classes
DSPACE(S(n)) := {L | some S(n) space bounded
deterministic machine accepts L}
DTIME(S(n)) := {L | some T (n) time bounded
deterministic machine accepts L}
NSPACE(S(n)) := {L | some S(n) space bounded
nondeterministic machine accepts L}
NTIME(S(n)) := {L | some T (n) time bounded
nondeterministic machine accepts L}
(for larger than n, the constant doesn’t matter)

� Arbitrarily difficult problems: For any recursive
function f , there exists a recursive function g such that no
f(n) time bounded machine can compute g

� Fully space/time constructible functions
- S(n) is fully space constructible: there exists a S(n) space
bounded TM M such that, on all inputs of length n, it uses
exactly S(n) space
- T (n) is fully time constructible: there exists a T (n) time
bounded TM M such that, on all inputs of length n, it uses
exactly T (n) time

� Thms
- DTIME(S(n)) ⊆ DSPACE(S(n))
- If L ∈ DSPACE(S(n)) and S(n) ≥ log n, then there
exists c = c(L) such that L ∈ DTIME(cS(n))
- If L ∈ NTIME(T (n)), then there exists c = c(L) such
that L ∈ DTIME(cT (n))

� Thm: If L is accepted by a S(n) ≥ log n space bounded
machine, then L can be accepted by a S(n) space bounded
machine which halts on all inputs

� Space hierarchy theorem: If S2(n), S1(n) ≥ log n and

S2(n) is fully space constructible and limn→∞
S1(n)
S2(n) = 0,

then DSPACE(S2(n))−DSPACE(S1(n)) 6= ∅

� Time hierarchy theorem: If T2(n), T1(n) ≥ (1 + ε)n and
T2(n) is fully time constructible and

limn→∞
T1(n) log(T1(n))

T2(n) = 0, then

DTIME(T2(n))−DTIME(T1(n)) 6= ∅

NP-completeness

� P := {L | some polynomial time bounded
deterministic machine accepts L}

� NP := {L | some polynomial time bounded
nondeterministic machine accepts L}

� coNP := {L | L ∈ NP}

� “Certificate” for NP problems: If L ∈ NP, then there
exists a deterministic polynomial time computable
predicate P (x, y) and a polynomial q such that
x ∈ L ⇐⇒ (∃y | |y| ≤ q(|x|)) [P (x, y)]

� Polynomial-time many-to-one reducibility:
L1 ≤pm L2: ∃ polynomial time computable f such that
x ∈ L1 ⇐⇒ f(x) ∈ L2

� L is NP-hard: ∀L′ ∈ NP, L′ ≤pm L

� L is NP-complete: L ∈ NP and L is NP-hard


