CS4232 .
Theory of Computation

| Preliminaries|

e 0N
¢ Alphabet (X): finite (non-empty) set of symbols

e String: finite sequence of symbols from a given alphabet
- empty string: € or A

e Language (L): a set of strings (over an alphabet)
-L1-Lo=11Ly = {Z‘y ‘ x € Ll,ye Lg}
-L*={zy...2y | x1,..., 2, € L,n € N}
Lt ={x...2n | 21,..., 2y € L,n > 1}
- Num of strings over any fixed finite alphabet is countable
- Num of lang. over any non-empty alphabet is uncountable

Regular Languages

e DFA, NFA, e-NFA, Regex are all equivalent (in terms of the
set of expressible languages)

Deterministic Finite Automata (DFA)

e A:=(Q,%,0,q,F), where:
- @ is a finite set of states
- ¥ is a (finite) alphabet
-0:Q x X — (@ is a function
- qo € @ is the starting state
- F C @ is the set of final states

¢ Transition table (example):
01

qo
q1
q2

e Transition function for strings:
-0(g,8) =q
- 6(qa a:a) = 6(6(qa I‘), Cl)

e Language accepted:
L(A) = Lang(A) = {w | 5(qo, w) € F}

(i.e. whether applying each char terminates in F')

e Dead state ¢: Vw € ¥*,6(q,w) & F
(i.e. cannot reach any final state from q)

e Unreachable state ¢q: Yw € X*, S(qo,w) #+q
(i.e. cannot reach ¢ from go)

Nondeterministic Finite Automata (NFA)

e A:=(Q,%,9,q,F), where:
- @) is a finite set of states
- ¥ is a (finite) alphabet
-6:Q x ¥ — 29 is a function
- qo € @Q is the starting state
- F C @ is the set of final states

e Transition table (example):
€ 0 1

q0
q1
q2

e Transition function for strings:
- é(QaE) = {Q}
- 5(,1[,’(1) = UpES(%@-) 5(27; a’)

e Language accepted:
L(A) = Lang(A) = {w | 0(go, w) N F # @}

(i.e. whether there is a path of chars that terminates in F')

e To show that every language acceptable by NFA is also
acceptable by some DFA:
Given NFA A = (Q,%, 4, qo, F),
define DFA Ap = (Qp,%,dp,{q}, Fp), where
-Qp = 2Q
-Fp={S|SCQand SNF #2} CQp
- 6p(5,a) = Uges 6(q,a)
and then prove that for any string w, 5};({(]0}, w) = S(qo, w)
by induction on length of w

e When simulating the NFA to DFA algorithm, omit
unreachable states and follow it like a flood-fill:

0 1
{ao0}
{Q(), (I1}

NFA with e transitions (e-NFA)
o A:=(Q,%,6,q,F), like NFA, but § : Q x (XU {e}) — 29

e ¢ closure: Eclose : Q — 29 is defined recursively:
- q € Eclose(q)
- p € Eclose(q) = Vp' € §(p,¢e), p' € Eclose(q)
(note: we define Eclose(<set>) to return a set union)

e Transition function for strings:
- 0(g,e) = Eclose(q)
- 0(q,wa) =, ¢ Eclose(p) where R = UpES(q,w) o(p,a)

e To show that every language acceptable by e-NFA is also
acceptable by some DFA:
Given e-NFA A = (Q,%, 8, qo, F),
define DFA Ap := (Qp, X, dp, Eclose(qo), Fp), where
-Qp =29
-Fp={S|SCQand SNF# 2} CQp
- 6p(8,a) = U,ep Eclose(p) where R = .5 d(p, a)

Regular Expressions

e Defined recursively:
- L(e) ={e}
-L(w) =92
-a€¥ = L(a) = {a}
- L(ry +72) == L(r1) U L(r2)
(r1-19) ={zy|x € L(r) and y € L(ry)}
-L(ry) =A{x1---2x | keNand z; € L(r1) V1 <i < k}
- L((r1)) = L(r1)

e To show that every language acceptable by DFA is also
accepted by some regular expression:
- Given DFA A = (Q, X%, 6, ¢start, F') where Q = {1,...,n}
for some n € N and gg¢qrt = 1,
let Rﬁ ; be the regular expression for the set of strings
formable by going from state ¢ to state j using intermediate
states numbered < k (note: ¢ and j may be more than k),
and prove by induction on k

> ar ifisy
-R?,j :{

here §(i,a,) = j
e+ ap ifi=j (i,ar) =

¥
- Ri;‘rl = Rﬁj + RﬁkJrl (Rllz+1,k+1) RII§+1,]'
- Then a regular expression for L(A) is 37, p R
e To show that every language acceptable by regular
expression is also accepted by some e-NFA:
- (the e-NFA built additionally satisfies: only one final
state, no transition into starting state, no transition out of
final state, the starting and final states are different)
- base cases: &, €, and a regular expressions: two states; set
edge as appropriate
- induction case: consider how to combine the e-NFA for

r1+ 7o, r1 -T2, 7 (remember to add es)

e Identities and extensions (the languages accepted are
equivalent):
-M+N=N+M
-L(M+N)=LM+ LN

-L+L=1L
-g*=¢

-ef=¢

- Lt =LL*=L*L
-L*=¢e+ LT

(L + M)* = (L*M*)*

DFA Minimisation

¢ Equivalence classes of strings in a language:
u=pv = Vr,ur € L <= wxr €L

e Given a regular language L over ¥, the equivalence classes
(if finite) form a unique minimal DFA (Q, X, 6, qo, F),
where:

- Q = {equiv(w) | w € £*}

- d(equiv(w), a) = equiv(wa)
- qo = equiv(e)

- F = {equiv(w) | w € L}

(this is well-defined)

e States (p,q) (unordered pair) are distinguishable: 3 string
w such that exactly one of S(p, w) and 5((], w) isin F
(can be shown that a distinguishable pair must be
distinguishable by a suffix no longer than n? length)

e Table building algorithm to determine all
distinguishable pairs:
- Base case: each pair (p,q) such that p € F and ¢ ¢ F (or
vice versa) is distinguishable
- Inductive step: for any a € X, if (§(p,a),d(q,a)) is
distinguishable, then (p, q) is distinguishable
Example (“X1”: final vs non-final; “X2”: distinguishable by
X1, ...):
q1
q2
a3
q4
g5

qo q1 q2 qs3 qa

e DFA minimisation algorithm:
0. Delete all non-reachable states
1. Find all nondistinguishable pairs of states (they give an
equivalence relation)
2. Build the new automata (Q, X, , go, F'), where:
- (@ is the set of equivalence classes
- 0(equiv(p), a) = d(equiv(q)) where dorig(p,a) = q
- qo is the equivalence class of the original starting state
- F' is the set of equivalence classes containing a final state
(all such equivalence classes will only contain final states)

Regular Languages

e Pumping lemma: If L is a regular language, then there
exists some n > 0 such that Yw € L where |w| > n, we can
break w into three strings w = xyz such that:

-y#e

oyl < n

—VkZO,xykzeL

Proof: Let n be the number of states in a DFA that accepts
L, and cousider the (n + 1) prefixes of w of lengths 0, ..., n,
and apply Pigeonhole principle on the states reached by
those (n + 1) prefixes

Corollary: All finite languages (languages containing a
finite number of strings) are regular

e Closure properties: If L; and Lo are regular languages,
then the following are regular:
- L1 ULy
Ly Loy
-LiNLs
-Ly— Lo
If L is a regular language, then the following are regular:
-L=%Y"—-1L
- L% (the set formed by reversing every string in L)

e Homomorphism: h: ¥ — B*, where X, B are alphabets
- For string, define h : ¥* — B* 1 ay---a, — h(a1) -+ h(ay,)
- If L is regular, then h(L) is also regular

e Parallel simulation: Taking the product of both sets of
states; choice of § and F' depends on the problem; can
easily model union and intersection of regular languages

Context-Free Languages

Context-Free Grammars

e G:=(V,T,P,S), where:
- V is a finite set of variables (aka. non-terminals)
- T is a finite set of terminals
- P is a finite set of productions of the form A — -, where
AeVandye (VUT)*
- S € V is the start symbol (note: S can be implicitly start)

e Derivations: aAfS =g ayf : there is a production A — ~
o =¢, B is defined inductively:
-a=faforallae (VUT)*
-Ifa=§ B and B =¢ 7, then a =¢ v

e Language accepted: L(G) ={w e T*| S =} w}
e Sentential form: Any « such that S = o

e Left-most derivation: replace left-most non-terminal
Right-most derivation: replace right-most non-terminal
- There is exactly one left-most (resp. right-most)
derivation for each valid parse tree

e Right-linear grammar: G is right-linear if all
productions are in one of these forms:
- A— wB, where w € T* and BeV
- A — w, where w € T*
Thm: Right-linear grammar is equiv. to regular language

e To show that every language acceptable by DFA is also
generated by some right-linear grammar:
- Given DFA A = (Q, %, 0,qo, F') (WLOG assume
QNX =9), define G := (Q, %, P, qo), where:
-Vq,p € Q, Va € %, if §(¢q,a) = p then add rule ¢ — ap to P
-Vge F,add ruleq - e to P
and then prove that for any string w,
0(qo,w) =p <= qo =¢ wp
(and hence S(qo,w) €EF = q=>Lw)

e To show that every language generated by some right-linear
grammar is also acceptable by some e-NFA:
- Given G = (V, 3, P,S) (WLOG assume V NY = &, and
each production is in the form A — bC or A — € where
beXU{e} and A,C € V (we can split up production rules
if this is not already the case)), define e-NFA
A= (V,%,0,85, F), where
- F:={A| A — ¢is aproduction in P}
-if A — aB is a production in P, then B € 6(4,a)
and then prove that A =§ wB <= B¢ S(A,w)
(and hence A =% w <= §(4,w)NF # @)
(and hence S =§ w <= 5(5, w)NF # @)

e Inherently ambiguous language: Any CFG for it will
have ambiguous parse trees

Pushdown Automata (PDA)

e P:=(Q,%,T,6,q0, Zo, F), where:
- @ is a finite set of states
- qo € @ is the start state
- F C @ is the set of final states
- Y is the input alphabet
- I is the stack alphabet
- Zy € I is the initial stack symbol
-5:Qx (ZUe) x T — 29%I7 is a function
(where (p,v) € §(¢,a, X) means that when in state g,
reading symbol a, top of stack being X, then the machine’s
new state is p, the X at top of stack is popped, and -y is
pushed to the stack (right side goes into stack first))

e Instantaneous descriptions:
(¢, w, @) means the current state is ¢, the input left is w,
and « is the current stack state
- (¢, aw, Xa) F (p,w, Ba) = (p,B) € 6(q,a,X) (a can be ¢)
-I+J = I=J o ({IF*Kand KFJ)

e Possible acceptance conditions: (they are equivalent)
By final state: {w | 3¢y € F such that (qo,w, Zo) Fp (¢r,¢, @)}
By empty stack: {w | 3¢ € @ such that (g0, w, Zo) F} (¢,¢,€)}

e Acc. by empty stack = Acc. by final state:
(intuitively: initially add a special stack symbol, and if that
special symbol is encountered then go to the final state)
Given P = (Q,%,T, 6, qo, Zo, F'), then
let Pp = (QU{po,ps}, Z, T U{Xo},dr, po, Xo,{ps}), where
- 0p(po, &, Xo) = {(q0, ZoXo)}

-VpeQ,Vae X U{e},VZ €T,
dr(p,a,Z) contains all (¢,v) € é(p,a,Z)
-Vp € Q,0r(p, e, Xo) contains (py,€)

e Acc. by final state = Acc. by empty stack:
(intuitively: from every final state, add a transition to a
special state py that empties the stack (note: still need
special stack symbol because the existing PDA might
empty the stack in a non-final state))

Given P = (Q, %, T, 6, qo, Zo, F'), then

let Pp == (QU{po,ps}, X, T U{Xo},d8r,po, Xo,{pr}), where
- 5E(p0757X0) = {(q07Z0X0)}
-VpeQ,VaeXU{e},VZ €T,
0g(p,a, Z) contains all (¢,v) € §(p,a,Z)
-Vpe FVZ €eTU{Xy},0r(p,e,Z) contains (py,)
-VZ e TU{Xo},0r(ps, e, Z) contains (py,e€)

e Note: in above two constructions, the constructed PDA
works both for final state and empty stack models

Equivalence of CFGs and PDAs

e To show that every CFG is accepted by a PDA (empty
stack model):
(intuitively, use left-most derivation and use stack to keep
track of “what is left to derive”)
Given G == (V,T, P, S), then
let PDA = ({q0}, T,V UT,$,qo, S, F), where
-Va € Ta 6((107 a, a) - {(quE)}
-VA e V,6(q, A) = {(q,7) | (A=) € P}

e To show that every PDA (empty stack model) is accepted
by a CFG:
(intuitively, each production rule fully removes one item
(and all the children that spawn) from the stack)
Given PDA = (Q,%,T,6,qo, Zo, F'), then
let G:= (V,%, R, S), where
-V ={S}u{leZp] | ¢,p € Q,Z €T}
- Vp € @, we have production S — [goZop]
- (r, Y-+ Yy) € 6(q,a,X), then Vry,...,rp € Q, we have
production [¢Xrg] — a[rYiri][r1Yara] - - [re—1Yers]

Deterministic PDA

e PDA where both conditions are satisfied:
-Va e XU {e},VZ € T',Vq € Q, there is at most one element
on 6(q,a,Z)
- if 6(q,e, X) is non-empty, then §(g, a, X) is empty for all
a €

e Thm: There exists a language which is accepted by PDA
but not by any DPDA

e Every regular language can be accepted by DPDA with
final state
- just don’t use the stack

e DPDA with empty stack cannot accept some regular
langauges
- if w € L then we can’t accept any w’ that contains w as a
prefix

Chomsky Normal Form

e All productions are in these forms:
- A— BC (where A,B,C €V)
-A—a(whereaeT and A€V)
(note: no e on purpose)

e Aisuseful: o, € (VUT)*, Jw e T* s.t. S=*adf =" w
A is useless: A is not useful

e A is generating: Jw € T™ such that A =* w
To determine generating symbols:
- Base case: all symbols in T" are generating
- Inductive step: if there is a production A — « and «
consists only of generating symbols, then A is generating

A is reachable: 3o, 5 € (V UT)* such that S =* aAS
To determine reachable symbols:

- Base case: S is reachable

- Inductive step: if A is reachable and A — « is a
production, then all symbols in « are reachable

A is useful = A is generating and reachable
(note: converse is not necessarily true)

Eliminating useless symbols:

1. Eliminate all non-generating symbols

2. Eliminate all non-reachable symbols

The resulting CFG does not contain any useless symbols

A is nullable: A =* ¢

To determine nullable symbols:

- Base case: if A — ¢ then A is nullable

- Inductive step: if A — « and every symbol in « is
nullable, then A is nullable

Eliminating € productions: Determine all nullable
non-terminals and replace each production of that
nonterminal A — « with A — o’ where o’ can be formed
from « by possibly deleting some of the non-terminals
which are nullable (but omit the production when a = €)

- e.g. If A and C are nullable then convert A — ABaCd to
A — ABaCd|BaCd|ABad|Bad - this method produces the
language L(G') = L(G) — {e}

- proof by induction that VA € V,Vw € T* — {e},

A=biw <= A=Lw

(note: if we really want nullable S, then we can wrap the
nonnullable grammar with a new symbol to)

Eliminating unit productions (i.e. determining A =* B
for any non-terminals A and B):

- Base case: (A4, A) is a unit pair

- Inductive step: if (A, B) is a unit pair and B — C is a
production, then (A, C) is a unit pair

Then for any unit pair (A4, B), remove the unit productions
of A, and for every production B — ~ add production

A—

Eliminating overlong productions:

All productions of length at least 2 can be converted to
acceptable form:

Given production A — X --- X, replace with:

-A— Z1B>

- BQ — Z2B3

-Br1 = Zy_12y

- Z; — X; if X, is a terminal

- Z; = X; (i.e. replace Z; with X; in above rules) if X; is a
nonterminal

Thm on size of parse tree: Suppose we have a parse tree
using a Chomsky Normal Form Grammar. If the length of
the longest path from root to a node is s, then the size of
the string generated is at most 257!

Pumping lemma: If L is a context-free language, then
there exists some n > 0 such that Vz € L where |z| > n, we
can break z into five strings z = uvwzy such that:

-vr Fe

- Jowz| < n

-Vi > O7uviwxiy el

Proof: In the CNF parse tree of any string of length at least
n = 2™ there is a path of length at least m + 1, so there
must be two non-terminals which are same

e Ogden’s lemma: If L is a context-free language, the there
exists some n > 0 such that Vz € L with a least n
distinguished positions, we can break z into five strings
z = wvwzxy such that:

- vz has at least one distinguished position
- vwx has at most n distinguished positions
- Vi > O,uviwxiy €L

e Closure properties:
- Union: If L; and Ly are context-free, then L U Lo is
context-free too
- Substitution: If L is context-free, and given any mapping
s from each terminal a to a context-free language L,, we
define s on strings as such:
s(e) = {e}
s(wa) = s(w) - s(a), Ya € B,Yw € T*
Then (J, ¢, s(w) is context-free
- Reversal: If L is context-free, then L := {w® |w e L} is
context-free
- Context-free N regular: If L is context-free and R is
regular, then L N R is context-free
- Note: Intersection might not be context-free

e Testing whether CFL is &: Check whether S is a useless
symbol

e Testing membership in a CFL: Convert to CNF, and
use a dynamic programming algorithm; for w = ay - - - ay,
we determine the set X; ; of non-terminals which generate
the string a;a;11---a;

- Base case: X, ; is the set of non-terminals that generate a;
- Inductive step: X, ; is the set of all A such that A — BC
and B € Xiyk,C € X]H_Lj,V’i <k< J

Then w is in the language iff S € X,

Example:
N1 2 3 4 5 6 7 8
1
2
3
4
5
6
7
8

e Greibach Normal Form: All productions are of the form
A — aa where a is a terminal and « is a string of zero or
more terminals or non-terminals
- all context-free languages not containing € have a
Greibach Normal Form grammar

Turing Machines

o M = (Q,%,T,0,q,B,F), where:
- @ is a finite set of states
- qo € @ is the start state
- I' is the tape alphabet
- X C T is the input alphabet
- B €T'— ¥ is the blank symbol
- F C Q is the set of final states
-0:QxI'—= QxT x{L,R} is a function

e Instantaneous description: zgz1 - Tp_1¢TpTny1 - Tm
means that the tape state is g - - - @, (all other symbols are
blanks) and the head is at position n (seems like there is no

memory of the “initial cell”, so we can’t calculate references

from it)
- ‘F’: one-step state transition
-I+J = I=J o ({[AF*Kand KFJ)

Language accepted:

L(M) = {z | gox F* aqsB for some ¢ € F'}

(by convention, once we enter an accepting state, we stop
and accept the input)

Function computed: the content of the tape after it halts
is the output of f (if it does not halt, then f is not defined
for the given input)

L is recursively enumerable: Some Turing machine
accepts L

L is recursive (decidable): Some Turing machine accepts
L, and halts on all inputs

f is partial recursive (partially computable): Some
Turing machine computes f (it halts and output f(x) for
all on which f is defined, and it does not halt on all other
inputs)

f is recursive (computable): Some Turing machine
computes f and f is defined an all elements of X*

Halting problem: It is not possible to determine if a
Turing machine will halt on a particular input

Equivalent extensions:

- stay where you are (‘S’ move)

- storage in finite control (extra memory to store finite
values, equivalent to growing the state)

- multiple tracks on a single tape

- subroutines

- semi-infinite tapes (i.e. tapes that are only infinite on one
end)

- multiple tapes (combine them into multiple tracks on a
single tape, and add one more track per original tape to
store a marker at the head position; then for one step of the
original machine, we look at all the current values (stored in
a finite store); time complexity is O(t?), where the original
machine took ¢ time)

- non-deterministic Turing machines (§(g, a) is instead a
(finite) set of possibilities; equivalent because we can do
BFS or IDDFS (by storing queued states separated by ‘#’))

Church-Turing thesis: Whatever can be computed by an
algorithmic devise (either function computation or language
acceptance) can be done by a Turing machine

Countability of strings: for each string = over {0,1}*, let
1z(in binary) — 1 be its code; let w; be the i*? string

Countability of Turing machines: (proof omitted); let
M; be the i*® machine

Non-RE language by diagonalisation:
Ly :={w; | w; € L(M;)} is not RE
(proof: show that Vj € N, L(M}) # Lq)

Thm: L is recursive = L is recursive
Thm: L is recursive <= L is RE and L is RE

Universal turing machine:
L, = {(M,w) | M accepts w} is RE

Thm: L, is not RE

e Cor: L, is not recursive

e Reduction: P; reduces to Py (P <,,, P2):
I recursive f such that z € P, < f(x) € P
(note: we can’t manipulate the answer from the oracle)
- If P; is not recursive then P, is not recursive
- If P; is not RE then P, is not RE
- If P, is recursive then P; is recursive
- If P, is RE then P, is RE

e Machines accepting the empty language:
L.:={M|L(M)=0}
Lne = {M | L(M) # 0}
Thm: L,. is RE
Thm: L. is not recursive
Cor: L, is not RE

e Non-trivial property about RE languages: there exists at
least one RE language which satisfies the property and at
least one RE language which does not satisfy the property

e Rice’s thm: If P is a non-trivial property about RE
languages, then Lp := {M | L(M) satisfies property P} is
undecidable

e Post’s correspondence problem (PCP): Given two lists
of strings A = wq,...,w, and B = x1,..., %), do there exist
i1,...,0m (where m > 0) such that w;, - w;,, = - 24,7

m

e Modified Post’s correspondence problem (MPCP):
Given two lists of strings A = wq,...,w and
B =x1,...,xp, do there exist iy, ...,y (where m > 0)
such that wiw;, - w,,, =124 25,7

m

e Thm: L, <,, MPCP <,, PCP
e Thm: PCP <,, (Is grammar ambiguous?)

e Further undecidable problems:
- Given CFGs G; and Ga, whether L(G1) N L(G3) = @7
- Given CFGs G; and Ga, whether L(G1) = L(G2)?
- Given CFG G and regular expression R, whether
L(G) = L(R)?

Unrestricted Grammars

e G:=(N,X%,S,P), where:
- N is a finite set of variables (aka. non-terminals)
- ¥ is a finite set of terminals (where N NX = @)
- P is a finite set of productions of the form o — 3, where
ae (NUD)*N(NUX)* (i.e. o has at least one
non-terminal) and 8 € (N UX)*
- S € V is the start symbol (note: .S can be implicitly start)

¢ Context-sensitive grammar: If we additionally have
|a| < || for all productions aw — § in P, then G is
context-sensitive

e Thms:
- If G is an unrestricted grammar, then L(G) is RE

- If L is RE, then there exists an unrestricted grammar such
that L = L(G)

Complexity

e Time complexity:
- Timeps(z): number of steps used by a machine M on
input x before halting (if it does not halt, then
Timep (z) = 00)

- for non-deterministic machines, we use the maximum time
on any path, including non-accepting ones

- M is T(n) time bounded, if for any input x of length n,
Timep (z) < T(n)

Space complexity:

- Spaceps(): maximum number of cells touched by M on
input « (excluding read-only input tape and one-way
write-only output tape) (if it does not halt, then
Space s (x) = 00)

- M is S(n) time bounded, if for any input z of length n,
Spacep (z) < S(n)

Language classes
DSPACE(S(n)) = {L | some S(n) space bounded

deterministic machine accepts L}

DTIME(S(n)) :={L | some T(n) time bounded

deterministic machine accepts L}
NSPACE(S(n)) = {L | some S(n) space bounded

nondeterministic machine accepts L}

NTIME(S(n)) == {L | some T(n) time bounded

nondeterministic machine accepts L}
(for larger than n, the constant doesn’t matter)

Arbitrarily difficult problems: For any recursive
function f, there exists a recursive function g such that no
f(n) time bounded machine can compute g

Fully space/time constructible functions

- S(n) is fully space constructible: there exists a S(n) space
bounded TM M such that, on all inputs of length n, it uses
exactly S(n) space

- T(n) is fully time constructible: there exists a T'(n) time
bounded TM M such that, on all inputs of length n, it uses
exactly T'(n) time

Thms

- DTIME(S(n)) € DSPACE(S(n))

-If L e DSPACE(S(n)) and S(n) > logn, then there
exists ¢ = ¢(L) such that L € DTIM E(c%™)

-If L e NTIME(T(n)), then there exists ¢ = ¢(L) such
that L € DTIME(c™™)

Thm: If L is accepted by a S(n) > logn space bounded
machine, then L can be accepted by a S(n) space bounded
machine which halts on all inputs

Space hierarchy theorem: If S3(n), S1(n) > logn and

Sa(n) is fully space constructible and lim,, g;gzg =0,

then DSPACE(S3(n)) — DSPACE(S1(n)) # @

Time hierarchy theorem: If T5(n),T1(n) > (14 ¢)n and
T5(n) is fully time constructible and

lim,, s o0 7T1(")Tlogflﬁ(")) =0, then

DTIME(Ts(n)) — DTIME(Ti(n)) £ @

NP-completeness

e P = {L | some polynomial time bounded

deterministic machine accepts L}

NP := {L | some polynomial time bounded
nondeterministic machine accepts L}

coNP = {L | L € NP}

“Certificate” for NP problems: If L € NP, then there
exists a deterministic polynomial time computable
predicate P(x,y) and a polynomial ¢ such that

zeLl = (Fyllyl <q(lz)) [Pz,y)]

¢ Polynomial-time many-to-one reducibility:
Ly <P Ls: 3 polynomial time computable f such that
x €Ly < f(x)€ Ly

e L is NP-hard: VL' e NP,/ <P L
e [is NP-complete: L € NP and L is NP-hard

